People are increasingly turning to software to design complex material structures like airplane wings and medical implants. But as design models become more capable, our fabrication techniques haven’t kept up. Even 3D printers struggle to reliably produce the precise designs created by algorithms. The problem has led to a disconnect between the ways a material is expected to perform and how it actually works.
Now, MIT researchers have created a way for models to account for 3D printing’s limitations during the design process. In experiments, they showed their approach could be used to make materials that perform much more closely to the way they’re intended to.
“If you don’t account for these limitations, printers can either over- or under-deposit material by quite a lot, so your part becomes heavier or lighter than intended. It can also over- or underestimate the material performance significantly,” says Gilbert W. Winslow Associate Professor of Civil and Environmental Engineering Josephine Carstensen. “With our technique, you know what you’re getting in terms of performance because the numerical model and experimental results align very well.”
The approach is described in the journal Materials & Design, in an open-access paper co-authored by Carstensen and Ph.D. student Hajin Kim-Tackowiak.
…